Section 2.2 The Inverse of a Matrix

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$
C A=I \quad \text { and } \quad A C=I
$$

where $I=I_{n}$, the $n \times n$ identity matrix. In this case, C is an inverse of A.
In fact, C is uniquely determined by A. This unique inverse is denoted by A^{-1}, so that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I
$$

A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Theorem 4. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is not invertible.
The quantity $a d-b c$ is called the determinant of A, and we write

$$
\operatorname{det} A=a d-b c
$$

Theorem 4 says that a 2×2 matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Find
Example 1. the inverse of A if $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 2\end{array}\right]$. Use the result to solve the equation $A \mathbf{x}=\left[\begin{array}{r}5 \\ 11\end{array}\right]$.
ANS: $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 2\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Using The 4, we know

$$
A^{-1}=\frac{1}{3 \times 2-1 \times 7}\left[\begin{array}{cc}
2 & -1 \\
-7 & 3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
7 & -3
\end{array}\right]
$$

$A \vec{x}=\left[\begin{array}{c}5 \\ 11\end{array}\right] \xrightarrow{\text { Multiply both sides by } A^{-1}} A^{-1} A \vec{x}=A^{-1}\left[\begin{array}{c}5 \\ 11\end{array}\right] \xrightarrow{\text { since } A^{-1} A=I} I \vec{x}=A^{-1}\left[\begin{array}{c}5 \\ 11\end{array}\right]$
Thus $\vec{x}=I \vec{x}=A^{-1}\left[\begin{array}{c}5 \\ 11\end{array}\right\rceil=\left[\begin{array}{cc}-2 & 1 \\ 7 & -3\end{array}\right\rceil\left[\begin{array}{l}5 \\ 11\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
So $x_{1}=1$ and $x_{2}=2$

In method in Example 1 works in general cases if A is invertible. Moreover, the solution is unique:

Theorem 5. If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathrm{x}=A^{-1} \mathbf{b}$.

Theorem 6.
a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses of A and B in the reverse order. That is,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

c. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Remark: The following generalization of Theorem 6 (b) is needed later.
The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order. E.g. $(A B C D)^{-1}=D^{-1} C^{-1} B^{-1} A^{-1}$

Example 2. Suppose P is invertible and $A=P B P^{-1}$. Solve for B in terms of A.

$$
\begin{aligned}
& \text { botht-munltiply } \\
& \text { bots by } P
\end{aligned} P^{-1} A P=\underbrace{B P^{-1} P}_{I(\text { identity })}=B I=B
$$

$$
\text { Thus } B=P^{-1} A P
$$

Elementary Matrices
An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

Example 3. Let

$$
\begin{gathered}
E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right] \\
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
\end{gathered}
$$

Compute $E_{1} A, E_{2} A$, and $E_{3} A$, and describe how these products can be obtained by elementary row operations on A.
ANS: Observe that. I $\xrightarrow{(-4) \times R 1+R_{3} \longrightarrow E_{1}}$

$$
\begin{aligned}
& I \xrightarrow{R_{1} \longleftrightarrow R_{2}} E_{2} \\
& I \xrightarrow{R_{3} \rightarrow 5 R_{3}} E_{3}
\end{aligned}
$$

So E_{1}, E_{2}, E_{3} are elementary matrices.
We compute

$$
\begin{aligned}
& \text { compute } \\
& E_{1} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g-4 a & h-4 b & i-4 c
\end{array}\right]
\end{aligned}
$$

Addition of $(-4) \times R 1$ of A to R3 produces E.A

$$
E_{2} A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g_{R 2} & h & i
\end{array}\right]=\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right]
$$

Interchanging R1 and R2 produces E2A

$$
E_{3} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5 \\
5 \times R 3 \text { produces } & E_{3} A
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
5 g & f h & 5 i
\end{array}\right]
$$

Theorem 7. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.
proofs on Pg 116. (elementary matrice were used in the proof)
An Algorithm for Finding_ A^{-1}
ALGORITHM FOR FINDING A^{-1}
Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. If A is row equivalent to I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to [$\left.\begin{array}{ll}I & A^{-1}\end{array}\right]$. Otherwise, A does not have an inverse.

Example 4. Find the inverses of the given matrix, if it exists. Use the algorithm above.
$A=\left[\begin{array}{ll}3 & 1 \\ 7 & 2\end{array}\right]$ Check Pg 117 for an example about 3×3 matrix.
ANS: $\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{ll|ll}3 & 1 & 1 & 0 \\ 7 & 2 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& R \left\lvert\, \times\left(-\frac{7}{3}\right)+R 2\left[\begin{array}{cc|cc}
3 & 1 & 1 & 0 \\
0 & -\frac{1}{3} & -\frac{7}{3} & 1
\end{array}\right]\right. \\
& \xrightarrow{R_{2} \times(-3)}\left[\begin{array}{ll|ll}
3 & 1 & 1 & 0 \\
0 & 1 & 7 & -3
\end{array}\right] \\
& \xrightarrow{(-1) \times R_{2}+R_{1}}\left[\begin{array}{cc|cc}
3 & 0 & -6 & 3 \\
0 & 1 & 7 & -3
\end{array}\right] \\
& \xrightarrow{R_{1} \times\left(\frac{1}{3}\right)}\left[\begin{array}{cc|cc}
1 & 0 & -2 & 1 \\
0 & 1 & -3
\end{array}\right] \\
& =\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right] \\
& \text { Thus } A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
7 & -3
\end{array}\right]
\end{aligned}
$$

