Section 2.2 The Inverse of a Matrix

An n X nmatrix A is said to be invertible if there is an n X n matrix C' such that
CA=1 and AC=1
where I = I, the n X n identity matrix. In this case, C'is an inverse of A.
In fact, C'is uniquely determined by A. This unique inverse is denoted by A~ sothat
ATA=T and AA'=1T

A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a
nonsingular matrix.

b
Theorem 4. Let A = lz d] .Ifad — bc # 0, then A is invertible and
1 d —b
Al =
ad — be l—c a]

The quantity ad — bc is called the determinant of A, and we write

If ad — be = 0, then A is not invertible.

det A = ad — be

Theorem 4 says that a 2 x 2 matrix A is invertible if and only if det A # 0.
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Example 1. kst the invese of A if A= 7 9l Use the result to solve the equation Ax = .
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Theorem 5. If A is an invertible n x n matrix, then for each b in R”, the equation Ax = b has the unique
solutionx = A~ 'b.

Theorem 6.

a. If A is an invertible matrix, then A~ is invertible and
-1
(A7) =4

b. If A and B aren X n invertible matrices, then so is AB, and the inverse of AB is the product of the
inverses of A and B in the reverse order. That is,

(AB) ' =B'A™!
c. If A is an invertible matrix, then so is A, and the inverse of AT is the transpose of A~1. That is,

(ah) "= (4"

Remark: The following generalization of Theorem 6 (b) is needed later.
The product of n X m invertible matrices is invertible, and the inverse is the product of their inverses in the

reverse order. Ej (A RC D)" - D—Ic'l B-IA—I
Example 2. Suppose P is invertible and A = PBP ~!. Solve for B in terms of A.
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Elementary Matrices

An elementary matrix is one that is obtained by performing a single elementary row operation on an identity
matrix.

Example 3. Let

o = O

Compute E1 A, E5 A, and E3 A, and describe how these products can be obtained by elementary row

operations on A.
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Theorem 7. An n X n matrix A is invertible if and only if A is row equivalent to I,,, and in this case, any
sequence of elementary row operations that reduces A to I,, also transforms I,, into A~".
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An Algorithm for Finding A !

ALGORITHM FOR FINDING A !
Row reduce the augmented matrix [A  I]. If A is row equivalentto I, then [A I is row equivalent to
[I A~1]. Otherwise, A does not have an inverse.

Example 4. Find the inverses of the given matrix, if it exists. Use the algorithm above.

3.1 I} n lo obount 3x3 Brix
A:{ } Ckec‘aljj 11»«' [ e,&l?m\r 0bow X3 Mabry X

7 2
ANS A I :rs l : ©
O R N P
RIx(-3) +R2 =R e
o -= |- |
N 3 3
R.x(-3) 3 | | 0
0 l 17 3
(DR, +R, 3 0 "6 3 |
o 1 3
2 x (3) oo [ ]
o) : 1 -3

¥

—\
!
-

—



